Scientifique américain Linus Pauling
Scientifique américain Linus Pauling

Vitamine C la VERITE d'apres Linus Pauling, 2 fois Prix Nobel. Une legende qui a la vie dure ? (Mai 2024)

Vitamine C la VERITE d'apres Linus Pauling, 2 fois Prix Nobel. Une legende qui a la vie dure ? (Mai 2024)
Anonim

Linus Pauling, en entier Linus Carl Pauling, (né le 28 février 1901 à Portland, Oregon, États-Unis - décédé le 19 août 1994 à Big Sur, Californie), chimiste physicien théoricien américain qui est devenu la seule personne à avoir remporté deux prix Nobel non partagés. Son premier prix (1954) a été décerné pour la recherche sur la nature de la liaison chimique et son utilisation dans l'élucidation de la structure moléculaire; le second (1962) reconnaît ses efforts pour interdire les essais d'armes nucléaires.

Petite enfance et éducation

Pauling était le premier de trois enfants et le fils unique d'Herman Pauling, pharmacien, et de Lucy Isabelle (Darling) Pauling, fille d'un pharmacien. Après ses premières études à Condon et Portland, Oregon, il a fréquenté l'Oregon Agricultural College (maintenant Oregon State University), où il a rencontré Ava Helen Miller, qui deviendra plus tard sa femme, et où il a obtenu son baccalauréat ès sciences en génie chimique summa cum laude en 1922. Il a ensuite fréquenté le California Institute of Technology (Caltech), où Roscoe G. Dickinson lui a montré comment déterminer la structure des cristaux à l'aide de rayons X. Il a obtenu son doctorat. en 1925 pour une thèse dérivée de ses papiers à structure cristalline. Après une brève période en tant que chercheur national, il a reçu une bourse Guggenheim pour étudier la mécanique quantique en Europe.Il a passé la majeure partie des 18 mois à l'Institut Arnold Sommerfeld pour la physique théorique à Munich, en Allemagne.

Élucidation des structures moléculaires

Après avoir terminé ses études postdoctorales, Pauling est retourné à Caltech en 1927. Là, il a commencé une longue carrière d'enseignement et de recherche. L'analyse de la structure chimique est devenue le thème central de ses travaux scientifiques. En utilisant la technique de la diffraction des rayons X, il a déterminé l'arrangement tridimensionnel des atomes dans plusieurs minéraux silicatés et sulfurés importants. En 1930, lors d'un voyage en Allemagne, Pauling a découvert la diffraction des électrons et, à son retour en Californie, il a utilisé cette technique de diffusion des électrons à partir des noyaux des molécules pour déterminer les structures de certaines substances importantes. Ces connaissances structurelles l'ont aidé à développer une échelle d'électronégativité dans laquelle il a attribué un nombre représentant la puissance d'un atome particulier d'attirer des électrons dans une liaison covalente.

To complement the experimental tool that X-ray analysis provided for exploring molecular structure, Pauling turned to quantum mechanics as a theoretical tool. For example, he used quantum mechanics to determine the equivalent strength in each of the four bonds surrounding the carbon atom. He developed a valence bond theory in which he proposed that a molecule could be described by an intermediate structure that was a resonance combination (or hybrid) of other structures. His book The Nature of the Chemical Bond, and the Structure of Molecules and Crystals (1939) provided a unified summary of his vision of structural chemistry.

The arrival of the geneticist Thomas Hunt Morgan at Caltech in the late 1920s stimulated Pauling’s interest in biological molecules, and by the mid-1930s he was performing successful magnetic studies on the protein hemoglobin. He developed further interests in protein and, together with biochemist Alfred Mirsky, Pauling published a paper in 1936 on general protein structure. In this work the authors explained that protein molecules naturally coiled into specific configurations but became “denatured” (uncoiled) and assumed some random form once certain weak bonds were broken.

On one of his trips to visit Mirsky in New York, Pauling met Karl Landsteiner, the discoverer of blood types, who became his guide into the field of immunochemistry. Pauling was fascinated by the specificity of antibody-antigen reactions, and he later developed a theory that accounted for this specificity through a unique folding of the antibody’s polypeptide chain. World War II interrupted this theoretical work, and Pauling’s focus shifted to more practical problems, including the preparation of an artificial substitute for blood serum useful to wounded soldiers and an oxygen detector useful in submarines and airplanes. J. Robert Oppenheimer asked Pauling to head the chemistry section of the Manhattan Project, but his suffering from glomerulonephritis (inflammation of the glomerular region of the kidney) prevented him from accepting this offer. For his outstanding services during the war, Pauling was later awarded the Presidential Medal for Merit.

While collaborating on a report about postwar American science, Pauling became interested in the study of sickle-cell anemia. He perceived that the sickling of cells noted in this disease might be caused by a genetic mutation in the globin portion of the blood cell’s hemoglobin. In 1949 he and his coworkers published a paper identifying the particular defect in hemoglobin’s structure that was responsible for sickle-cell anemia, which thereby made this disorder the first “molecular disease” to be discovered. At that time, Pauling’s article on the periodic law appeared in the 14th edition of Encyclopædia.

While serving as a visiting professor at the University of Oxford in 1948, Pauling returned to a problem that had intrigued him in the late 1930s—the three-dimensional structure of proteins. By folding a paper on which he had drawn a chain of linked amino acids, he discovered a cylindrical coil-like configuration, later called the alpha helix. The most significant aspect of Pauling’s structure was its determination of the number of amino acids per turn of the helix. During this same period he became interested in deoxyribonucleic acid (DNA), and early in 1953 he and protein crystallographer Robert Corey published their version of DNA’s structure, three strands twisted around each other in ropelike fashion. Shortly thereafter James Watson and Francis Crick published DNA’s correct structure, a double helix. Pauling’s efforts to modify his postulated structure had been hampered by poor X-ray photographs of DNA and by his lack of understanding of this molecule’s wet and dry forms. In 1952 he failed to visit Rosalind Franklin, working in Maurice Wilkins’s laboratory at King’s College, London, and consequently did not see her X-ray pictures of DNA. Frankin’s pictures proved to be the linchpin in allowing Watson and Crick to elucidate the actual structure. Nevertheless, Pauling was awarded the 1954 Nobel Prize for Chemistry “for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances.”